

2006
HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK # 2

Mathematics Extension 2

General Instructions

- Reading time 5 minutes.
- Working time -2 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All *necessary* working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Hand in your answer booklets in 3 sections.

Section A (Questions 1 - 3),

Section B (Questions 4 - 6) and

Section C (Questions 7 - 8).

• Start each **NEW** section in a separate answer booklet.

Total Marks - 90 Marks

- Attempt Sections A C
- All questions are NOT of equal value.

Examiner: E. Choy

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Total marks – 90 Attempt Questions 1 - 8 All questions are NOT of equal value

Answer each section in a SEPARATE writing booklet. Extra writing booklets are available.

SECTION A (Use a SEPARATE writing booklet)

Question 1 (8 marks)			Marks
(a)		Given $z = \frac{3-i}{2+i}$ find	
	(i)	$z\overline{\overline{z}}$	2
	(ii)	$\tan(\arg z)$	1
(b)	(i)	If $z = 1 + \cos \theta + i \sin \theta$, for $0 < \theta < \pi$, then show that	3
		$z = 2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$	
	(ii)	Hence, find $ z $ and $\arg z$ in terms of θ	2
Ques	tion 2	(9 marks)	
(a)		If α , β and γ are the roots of $x^3 - 2x + 5 = 0$, find the cubic polynomial that has roots	
	(i)	$2-\alpha$, $2-\beta$ and $2-\gamma$.	2
	(ii)	$\alpha^2 + \beta^2$, $\beta^2 + \gamma^2$ and $\gamma^2 + \alpha^2$	2
(b)		Given that p and q are real and also that $1-4i$ is a root of the equation	ŗ
	,	$x^{2} + (p+i)x + (q-5i) = 0$	
	(i)	Find the values of p and q .	.3
	(ii)	Find the other root of the equation.	2

Question 3 (13 marks)

Marks

2

- (a) Let $\omega = \cos \theta + i \sin \theta$, where $0 < \theta < \pi$
 - (i) Express ω^2 and $\frac{1}{\omega}$ in modulus-argument form.
 - (ii) Given that $\omega^2 + \frac{5}{\omega} 2$ is a purely imaginary number, show that $2\cos^2\theta + 5\cos\theta 3 = 0$.
 - (iii) Hence, or otherwise, evaluate θ and express ω in modulusargument form.
- (b) A and B are two distinct points in an Argand diagram representing two distinct, non-zero numbers z_1 and z_2 respectively. Suppose that $z_2 = \omega z_1$, where ω is the number found in (a) above.
 - (i) Find $\left| \frac{z_2}{z_1} \right|$ and $\arg \left(\frac{z_2}{z_1} \right)$
 - (ii) Show that $\triangle AOB$ is an equilateral triangle, where O represents the number 0 in the Argand diagram.

End of Section A

SECTION B (Use a SEPARATE writing booklet)

Question 4 (12 marks)

Marks

The sketch of y = f(x) is shown below

You are given that the x – intercept is x = 1; x = 0 is a vertical asymptote and y = 0 is a horizontal asymptote. As well, (2,2) is a stationary point and (4,1) is a point of inflexion.

On the Answer Sheet provided draw separate graphs for

(i)
$$y^2 = f(x)$$

(ii)
$$y = \frac{1}{\left[f(x)\right]^2}$$

(iii)
$$y = f'(x)$$

$$(iv) \quad y = e^{f(x)}$$

(v) Draw a possible diagram for the primitive function of
$$f(x)$$

Question 5 (10 marks)

Marks

(a) Given that C is the curve defined by

$$f(x) = \frac{\sin 2x}{2 - \cos 2x}$$

where $0 \le x \le \pi$

(i) Find the x and y intercepts of C.

2

(ii) Find the turning point(s) of C and determine their nature.

2

(iii) Show that $f(x) = -f(\pi - x)$.

2

(iv) Sketch the curve $y = \frac{|\sin 2x|}{2 - \cos 2x}$ for $0 \le x \le \pi$

3

Question 6 (8 marks)

(a) In the diagram below, PA is the tangent to the circle at A, whose centre is O.

Line PCB cuts the circle at B and C.

The angle bisector of $\angle APB$ meets AB at D and AC at E.

Prove that $\frac{DB}{AB} + \frac{EC}{AC} = 1$

6

(b) How many ways are there to pick a man and a woman who are not husband and wife from a group of *n* married couples?

End of Section B

SECTION C (Use a SEPARATE writing booklet)

Question 7 (21 marks)

Marks

(a) (i) Find
$$\int \frac{e^x}{\sqrt{1-e^{2x}}} dx$$

(ii) Find
$$\int \frac{3x^2 - 6x + 1}{(x - 3)(x^2 + 1)} dx$$

(iii) Find
$$\int \frac{1}{1-\cos x} dx$$

(iv) Find
$$\int x^6 \ln x \, dx$$

(b) (i) Show that
$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} \left[f(x) + f(-x) \right] dx$$
 3

(ii) Hence show that
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{e^x \sin^2 3x}{1 + e^x} dx = \frac{\pi}{6}$$

(c) (i) Let
$$\alpha$$
 and β be the roots of the equation $x^2 - ax + b = 0$.

Find the monic quadratic equation that has roots α^2 and β^2 .

(ii) Hence, show that the equation whose roots are the eighth powers of the roots of the equation
$$x^2 - x - 1 = 0$$
 is $x^2 - 47x + 1 = 0$.

(iii) Using the results of (ii) above show that
$$\left(\frac{47+21\sqrt{5}}{2}\right)^{\frac{1}{8}} = \frac{1+\sqrt{5}}{2}$$

Question 8 (9 marks)

The diagram above shows a particle projected from a point O on horizontal ground with speed V m/s and at an angle of elevation, α° , where $0^{\circ} < \alpha^{\circ} < 90^{\circ}$.

(i) Show that the *maximum* horizontal range of the particle is R where $R = \frac{V^2}{g}$.

You may assume that $\ddot{x} = 0$ and $\ddot{y} = -g$, where g is the acceleration due to gravity. x and y are the respective horizontal and vertical distances travelled by the particle.

1

2

(ii) Show that the equation of the trajectory of the particle can be written as $y = x \tan \alpha^{\circ} - \frac{x^2 \left(1 + \tan^2 \alpha^{\circ}\right)}{2R}$.

You may **assume** that the formula for the trajectory is given by $y = x \tan \alpha^{\circ} - \frac{gx^2}{2V^2} (1 + \tan^2 \alpha^{\circ}).$

- (iii) The particle just clears a wall, which has horizontal and vertical distances from O are $\frac{R}{2}$ and $\frac{R}{4}$ respectively.
 - (α) Find two possible value of α° .
 - (β) Find the horizontal range of the particle, in terms of R, for each possible value of α° .

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin(x + \sqrt{x^2 - a^2}) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$
NOTE: $\ln x = \log_e x, x > 0$

(a)
$$3 = \frac{3-i}{2+i} = \frac{(3-i)(2-i)}{(2+i)(2-i)}$$

$$= \frac{6-5i-1}{5}$$

$$= \frac{5-5i}{5}$$

$$= 1-i$$
(i) $3\overline{3} = |3|^2 = (\sqrt{2})^2$

$$= |2|$$

(b) (1)
$$3 = 1 + \omega + i \sin \theta$$

= $1 + (2\omega^{2} - i) + i \cdot 2\sin \phi$, $\omega + \phi$.
= $2\omega^{2} + \theta i \sin \phi$, $\omega + \phi$.
= $(2\omega + i) \cos \phi$.

```
QUESTION 2.
  (a)(1) Let X=2-x ie z=2-x
         : x^3 - ax + 5 = 0 becomes (2-x)^3 - a(2-x) + 5 = 0.
                          ie. 8-12x +6x -x 3-4+ 2x+5=0
                          ie. | x3-6x2+10x-9=01
(11) Moing the identity L+B+8+8= (d+B+8)2-2 (LB+ d8+68)
    d+B, B+ y and x+2 => 4-8, 4-2, 4-B
       Maning X = 4-x2 => x2=4-X => x= V4-X
      : x3-2x +5=0 becemes
          (\sqrt{4-x})^3 - 2(\sqrt{4-x}) + 5 = 0
        (4-x) \( \sqrt{4-x} - 2 \sqrt{4-x} + 5 = 0
        \sqrt{4-x} \left(4-x-a\right) = -5
              \sqrt{4-x} (2-x) = -5
       squaring (4-x) (4-4x+x2) = 25.
              16-16x+4x2-4x+4x2-x3=01
```

Sinkly Lecemer | x 3 8x + 20x + 9 = 0. | (b) (n 2 + (2+i) x + g-ri = 0 1-40 is a met-.: (1-4i) +(p+i) (#-4i) +g/i =0. -15-8i+P-4Pi+i+4+q-5i=0 -5+P +4+g -8-4p+1-55 $\frac{4p = -12}{p = -3}$ Q = 14. $x^{2}+(-3+i)x+14-5i=0$ CAM'T USIZ THE CONJUGATE is the equation ROOT THEOREM. as co-efficients arenet Keal · 1-4i+3 =3-i 3 = 2 +3i

```
QUESTION 3.
 (ayın w= wo+i mo.
      .. by she menine therew.
       W= W30+isin20.
     + to = w'= cos(0) + i sin(0))
               on uso-inio.
  (11) w+5w-1-2 = wodo+i mide +5(co-i mo)-2.
                 = 2 m² 0 - 1 + 5 000 0 - 2 + i (ain 20 - 5 cino)
    If this is purely imaginary the Real part is zero.
     ie. 2 us + 5 us a - 3 = 0. (A)
( 111) Solving A CVSO = -5 ± \( 25 + 24 \) BOR.
                                 (2 cp 0 -1) (cp 0 +3)=0
                                             Cro=1,-3.
              \therefore cos = \frac{1}{2} \quad (cos \neq -3)
```

(b) (1) now
$$3r = W3$$
.

$$\frac{3r}{3} = W$$

$$\frac{3r}{3!} = |W| = |W = \frac{\pi}{3} + i \times \frac{\pi}{3}|$$

$$\frac{|3r|}{3!} = 1.$$

$$|\alpha q \frac{3r}{3!} = \alpha q W = \frac{\pi}{3}.$$

$$|A = \frac{\pi}{3}.$$
(1)
$$\frac{|3r|}{3!} = \frac{|3r|}{3!} = 1.$$
(1)
$$\frac{|3r|}{3!} = \frac{|3r|}{3!} = 1.$$
(4)

(")
$$|B(32)| = |A(31)| =$$

. : DAOB is issueles

Furtheimere arg
$$\frac{3r}{31}$$
 = $arg \frac{3r}{31}$ - $arg \frac{3r}{31}$.

= AOB

= $\frac{\pi}{3}$.

(.: D'AOB is equilation as it is resorder and contains a 60° angle!), 4. (a) The sketch of y = f(x) is shown below.

You are given the x-intercept is x = 1, x = 0 is a vertical asymptote and y = 0 is a horizontal asymptote. As well, (2, 2) is a stationary point and (4, 1) is a point of inflexion.

On the answer sheet provided draw separate graphs for

(i) $y^2 = f(x)$

2

3

(v) Draw a possible diagram for the primitive function of f(x).

5. (a) Given that C is the curve defined by

$$f(x) = \frac{\sin 2x}{2 - \cos 2x}$$

2

3

2

where $0 \le x \le \pi$:

(i) Find the x and y intercepts of C.

Solution: We note that $2 - \cos 2x > 0 \, \forall \, x$ and $\sin 2x = 0$ when $2x = 0, \, \pi, \, 2\pi,$ i.e., $x = 0, \, \frac{\pi}{2}, \, \pi$. So x-intercepts are at $0, \, \frac{\pi}{2}, \, \pi$ and the y-intercept is 0.

(ii) Find the turning point(s) of C and determine their nature.

Solution: $f'(x) = \frac{(2 - 2\cos 2x)2\cos 2x - \sin 2x(2\sin 2x)}{(2 - \cos 2x)^2}$ $= \frac{4\cos 2x - 2\cos^2 2x - 2\sin^2 2x}{(2 - \cos 2x)^2}$ $= \frac{2(2\cos 2x - 1)}{(2 - \cos 2x)^2}$ $= 0 \text{ when } \cos 2x = \frac{1}{2}$ $\text{i.e., } 2x = \frac{\pi}{3}, \frac{5\pi}{3}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}$

Now
$$f'(0) = \frac{2}{1}$$

 $f'(\frac{\pi}{2}) = \frac{-6}{9} = -\frac{2}{3}$
 $f'(\pi) = \frac{2}{1}$

... Maximum turning point at $\left(\frac{\pi}{6}, \frac{1}{\sqrt{3}}\right)$ and minimum turning point at $\left(\frac{5\pi}{6}, -\frac{1}{\sqrt{3}}\right)$.

(iii) Show that $f(x) = -f(\pi - x)$.

Solution: R.H.S. $= \frac{-\sin(2[\pi - x])}{2 - \cos(2[\pi - x])},$ $= \frac{-\sin(2\pi - 2x)}{2 - \cos(2\pi - 2x)},$ $= \frac{-\sin(-2x)}{2 - \cos(-2x)},$ $= \frac{\sin 2x}{2 - \cos 2x},$ = L.H.S.

6

(iv) Sketch the curve $y = \frac{|\sin 2x|}{2 - \cos 2x}$ for $0 \le x \le \pi$.

6. (a) In the diagram below, PA is the tangent to the circle at A, whose centre is O. Line PCB cuts the circle at B and C.

The angle bisector of $\angle APB$ meets AB at D and AC at E.

Prove that $\frac{DB}{AB} + \frac{EC}{AC} = 1$.

In \triangle s BAP, ACP,

$$\angle APC = \angle BPA$$
 (common)

$$\angle PAC = \angle PBA$$
 (\angle in alternate segment)

```
2
```

```
Solution: [Continued from last page.]
Also, in \triangles DBP, EAP,

\angle BPD = \angle APE \quad (PE \text{ bisects } \angle APB \\
\angle PAC = \angle PBA \quad (\text{ as above})

\therefore \triangle DBP /// \triangle EAP \text{ (equiangular)}.

\frac{BP}{AP} = \frac{DB}{EA} \text{ (corresp. sides of similar } \triangle s) \dots \dots 2

So, from 1 and 2 we have:

\frac{AC}{AB} = \frac{AE}{DB},

\frac{DB}{AB} = \frac{AE}{AC},

\frac{DB}{AB} = \frac{AC - EC}{AC},

\frac{DB}{AB} = 1 - \frac{EC}{AC},

i.e., \frac{DB}{AB} + \frac{EC}{AC} = 1.
```

(b) How many ways are there to pick a man and a woman who are not husband and wife from a group of n married couples?

Solution: Method 1—

Ways of choosing the man, $\binom{n}{1} = {}^{n}C_{1} = n$.

Ways of choosing a woman who is not his wife = n - 1.

 \therefore Total number of ways = n(n-1).

Solution: Method 2—

Ways of choosing a couple without restriction $= n^2$.

Ways of choosing a married couple = n.

 \therefore Total number of ways $= n^2 - n$.

Question 7

(a) (i)
$$\int \frac{e^{x}}{\sqrt{1-e^{2x}}} dx$$
 let $u = e^{x} i$

$$du = e^{x} dx$$

$$\int \frac{du}{\sqrt{1-u^{2}}} = \sin^{-1} u + C$$

$$= \sin^{-1} (e^{2x}) + C$$

$$I = \int \frac{3x^{2} - 6x + 1}{x^{3} - 3x^{2} + x - 3} dx = loge (x^{3} - 3x^{2} + x - 3) + C$$

$$3x^{2}-6x+1 = A(x^{2}+1)+(Bx+c)(x-3)$$

$$\Rightarrow A+B=3; C-3B=-6; A-3C=1$$

$$\Rightarrow A=1 B=2 C=0$$

$$= \int \left(\frac{1}{x+3} + \frac{2x}{2c^2+1}\right) dx$$

$$= \ln(x+3) + \ln(x^2+1)$$

$$= \ln(2c+3)(x^2+1)$$

$$= \ln(x^3-3x^2+x-3) + C$$

(iii)
$$\int \frac{1}{1-\cos x} dx \qquad \text{by t results}$$

$$= \int \frac{2}{1+t^2} dt \qquad dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$$

$$= \int \frac{1-t^2}{1+t^2} dt \qquad dt = \frac{1}{2} \left[1+\tan \frac{x}{2}\right] dx$$

$$= \int \frac{2}{2t^2} dt \qquad \frac{2}{1+t^2}$$

$$= \int t^{-2} dt \qquad = -\frac{1}{t}$$

$$= -\frac{1}{t}$$

$$= - \cot \frac{3c}{2} + c$$

(iv)
$$\int x^6 \ln x \, dx$$

= $\int \ln x \cdot d(x^7) \, dx$
= $\frac{2}{7} \ln x - \int \frac{x^7}{7} \cdot \frac{1}{x} \, dx$
= $\frac{2}{7} \ln x - \frac{1}{7} x^6$
= $\frac{2}{7} \ln x - \frac{1}{47} x^7 + c$

Q(7) (b) LHS =
$$\int_{-a}^{a} f(x) dx$$

(i)
$$= \int_{-a}^{o} f(x) dx + \int_{o}^{a} f(x) dx$$
(let $x = -u$)
$$= \int_{0}^{o} f(-u) \cdot -du + \int_{0}^{a} f(x) dx$$

$$= \int_{0}^{a} f(x) dx + \int_{0}^{a} f(x) dx$$

$$= \int_{0}^{a} [f(-x) + f(x)] dx$$

$$= RHS$$

(ii)
$$\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{e^{x} \sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\frac{\pi}{3}} \frac{e^{x} \sin^{2} 3\pi}{1 + e^{x}} + \frac{e^{-x} \sin^{2} (-3\pi)}{1 + e^{-x}} dx$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{e^{x} \sin^{2} 3\pi}{1 + e^{x}} + \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{e^{x} \sin^{2} 3\pi}{1 + e^{x}} + \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx = \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi}{1 + e^{x}} dx$$

$$= \int_{0}^{\pi/3} \frac{\sin^{2} 3\pi$$

= = [(-0) - (0-0)] = [1/2

(c) (i)
$$x^{2}-axc+b=0$$
 $x+\beta=-(-a)=a$
 $x^{2}+\beta^{1}=(x+\beta)^{2}-2x\beta$
 $x^{2}+\beta^{1}=a^{1}-2b$

Required eq $x^{2}-(x^{2}+\beta^{1})x+x^{1}\beta^{2}=0$
 $x^{2}-[a^{2}-2b]x+b^{2}=0$

(ii) $x^{2}-x-1=0 \Rightarrow a=1 b=-1 from(i)$

... Eq $x^{2}-x+1=0$

Eq $x^{2}-x+1$

SINCE

Encertion 8

$$\frac{\dot{x}=0}{\dot{x}=0} \quad \dot{y}=-g \quad x=0 \quad y=0 \quad \dot{x}=V\cos\alpha \quad \dot{y}=V\sin\theta$$

$$\dot{x}=C_1 \quad \dot{y}=-g+C_2$$

$$\dot{x}=V\cos\alpha \quad \dot{y}=V\sin\alpha-g+1$$

$$\dot{x}=V\cos\alpha \quad + C_3$$

$$\dot{y}=V\sin\alpha-g+1$$

$$\dot{y}=V\cos\alpha \quad - g+1$$

$$\dot{$$

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

(x) Using (x)
$$\Rightarrow \frac{R}{4} = \frac{R}{2} \tan x - \frac{R^2}{2R} (1 + \tan^2 x)$$

$$\frac{R}{4} = \frac{R}{2} \tan x - \frac{R}{8} (1 + \tan^2 x)$$

$$tan \alpha = 3 \implies \alpha = 71^{\circ}34'$$

$$tan \alpha = 1 \implies \alpha = \pi$$

When
$$\theta = \frac{1}{4}$$
 Rouge = $\frac{2}{9} \sin \frac{\pi}{2} = \frac{\sqrt{2}}{9}$

When 0 = tan 3 => Range =
$$\frac{v^2}{g}$$
. 2 sinox cosx

Rouge =
$$\frac{V^2}{5}$$
. 2. $\frac{3}{470}$. $\frac{1}{10} = \frac{3}{5}R$